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I. INTRODUCT:ON

Fluid metals around normal density can be thought of as 1low
temperature non-ideal plasmas. They are plasmas in that the Coulomb
interactions among the constituent particles are important in determining
thermodynamic and transport properties. They are low temperature in that
even up to 1 eV the temperature is less than or comparable to the_average
interionic electrostatic energy. The resulting high I'’s (T = 22e2/<r>kT)
cause the pair distribution function to look more like that of a normal
l1quid than that of an jdeal gas. For the present studies T ~ 10-100 Zz,
where Z is the effective charge of the ions. The real metallic systems
have several important differences from idealizations such as the one
couponent plasma model. For example, since the wmean distance between
electrons, r,, varies between 2 and 3 in atomic units with temperatures
betwveen 0.1 and 1 eV, the electron gas is degenerate, but polarizable.
Therefore, unless the electron screening is well known, the cffective
Coulnmb interaction between ions cannot be lpeiified. Furthermore,
according to the model of Ashcroft and Lekner,” the packing fraction
along the liquidus remains roughly constant at 0.46. As a result the
excluded volume of the ions probably cannot be ignored anywhere over the
density range from two-fold compressed to four-fold expanded. These com=-
plexities make realistic modeling of dense fluid metals very difficult in
practice.

Over the past several rdecades, we have developed techniques for ac-
curate thermodyramic and transport measurements over a wide range of den-
sities and temperatures. The two regions we shall concentrate on here
are shock compression and heating to | eV and two-fold density increases,
and jsobaric expansion to | eV and tour-fold density decreases. These
experimental capabilities can now produce metal samples in stable, equi-
librium states, defined to 1=2% in thermodynamic parameters, for times
long enough to perform other expcriments.



There are several r7reasons for choosing the acoustic velocity as a
parameter to measure for dense fluid wmetals. Pirst, the acoustic
velocity 4s directly related to the adisbatic bulk modulus, a derivative
of the equation of state surfsce in P,V,E space. Since the equation of
statec surface may be subtly affected by changes 1in interparticle
potential, measurements of the derivative will be much more sensitive to
these changes. For example, there is growing evidence that at least some
of the conduction electrogs are localized in fluid mercury as the density
decreases belov 9 gm/cc.” Since screening by the degenerate electron sas
is accomplished by electrons near the Fermi surface, chauges due to lo-
calization in the density of states at the Fermi Surface will certainly
chacge the effective interparticle potential. There is indication that
this effect can be seen in the acoustic velocitye.

Another reason for interest in acoustic velocities is that, when
combined with accurate data along shock compression or isobaric expansion
paths on the equation of state suiface, these measurements allow a purely
experimental determination of most of the important thermodynamic quanti-
ties. These include the heat capacity at constant volume, Cv, the
isothermal bulk modulus, BT, and Grineisen’s gamma, Y.« The latter two
quantities can be thought of roughly as the orthogonal derivatives of the
P,V,T equation of state surface in that

and (1)

In the following sections we will outline the methods of making acoustic
velocity measurements on samples vhich are destroyed in time scales of
milliseconds or less, the analytical techniques for calculating the ther-
modynamic quantities of interest, and new results indicating a linear re-
lationship of acoustic velocity with density over a very large density
range.

I1. SHOCK COMPRESSION

Shock compression 1s one way of obtaining fluid metals at high
temperature and density and in well defined thermodynamic atates. The
irreversible nature of sehock compression results in large entropy or
temperature increases, so that for sufficiently strong shocks the com-
pressed material will be molten. The thermodynamic state is determined
by the Hugoniot relations, which are nothing more than stateuents of cou-
servation of mass, momentum, and energy across the shock front.” One com-
plexity often encountered for solids is avoided when the nhocked material
is wolten. Since the momentua conservation condition gives a Hugoniot
equation referring to the longitudinal stress ({.¢., in the direction of
shock propagation), the stress tensor in the shocked solid may be unde-
termined. In the solid, longitudinal and transverse stresses may be dif-
ferent. However, 1f the shoc!. melts the sample, the liquid cannot sup-
port significant deviatoric stresses, so the longitudinal and tangential
stresses are identical. For this case the prassure is well defined.



The question of equilibrium often arises in shock wave physics. How
does one knov that the P,V,E point determined by dynamical weasurements
in a shock vave experiment detcrmines & point on the equilibrium equation
of state surface? In ansver to that, we have a wealth of empirical evi-
dence that dynamic and ltatgc high pressure data normally agree to vwithin
experimental uncurtainties. Furthermore, molecular dynamics calcula-
tions for monatomic systems, such as wetals, iudicate a very rapid equi-
libration of the trnnllatignal degrces of freedom following an abrupt de-
parture from equilibrium. For these reasons vwe consider that the ther-
modynamic state behind & shock is both well defined and in equilibrium.
We have developed techniques for measuring acoustic velocity ia shock
compressed saterials primarily to determine high pressure welting points.
If the coumpressed material is solid, this velocity is the longitudinal
elastic wave velocity, vwhile, if the material i¢ partially wmolten, the
higheat velocity acoustic disturbance travels with the bulk wvave
velocity.7 Since these velocities typically differ by 20—301. it 1s easy
to dotermine where the Hi oniot curve crosses the solidus.

The basis for acoustic velocity measurements in shock melted metals
18 the use of a short shock, &s jllustrated in Fig. l. When a thin plate
hits a target, shocks wmove forvard (to the right on Fig. 1) from the
impact surface into the target and backward in ='. plate. When the shock
reaches the free rear surface of the plate, the zero pressure boundary
condition requires that a rarefaction wave propagates forward in the di-
rection of the shock in the target. This situation corresponds to t = 0
in Fig. 1. The rarefaction wave is disperaive since the leading edge 1is
moving into hot compressed material, in which the acoustic velocity
normally exceeds the original shock velocity, while the trailing edge of
the rarefaction is wmoving into decompressed material. When the
rarefaction overtakes the shock wave the peak shock pressure decreases,
as does the shock velocity. Previous attempts to measure the overtake by
observing the decrease in shock velocity have often beT?Z anbjguous be-
cause the measured wave velocity scales youghly as P + In this case
small changes in peak pressure result in even smaller changes 1in wave

velocity.
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Figure 1. Evolution of a short shock. At t = 0 the
release from ¢ free surface begins to overtake
the shock. When overtake occurs the peak
pressure and shock velocity decreasa.



The fmprovesent we bave introduced, which allows us to measure the
acoustic velocity in hot wmateriale at wvery high pressure, involves
l.alutisg the thermal radiation from the shock front in a transparect
sedius.”’ Since the thermal radiation intensity varies as a high power of
the tesperature at the shock front, or equivalently the shock pressure,
small decreases in peak pressure result ifno wuch larger fractional
decreases in detectad light intensity. By choosing a transparent amedium,
the optical analyzer, in which the shock front is opaque, we can assure
that we are measuring the leading edge of the shock wave structure. By
varying the metal target thickness through which the shock wave structure
must pass before entering the optical analyzer wve can wmake wmeasurements
wvhich allow us to extrapolate to a target thickness for which the
rarefaction overtakes the shock at the target-optical-analyzer interface.
This experimental technique eliminates the need of complex hydrodynamic
calculations to account for perturbations due to waves reflecting from
the metal-optical-analyzer interface.

The calculations required to obtain the acoustic velocity from the
measured time for 1 release to overtake the shock have been presented 1o
detail elsewvhere. 0 Synce the acoustic velocity in a fluid determines
the slope of an isentrope certered on the shock state, and the P-V rela-
tion determined by the Hugoniot equations (referred to as the Hugoniot)
determines the slope of & different, stiffer curve on the equation of
state surface, by differencing them one can obtain an exprzssion for the
- Griilneisen paraweter:
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where the subscript S refers to the {isentropic derivatives, while the
subscript H refers to derivatives along the Hugoniot. if one also
meayures or calculates the temperature alon* the Hugoniot, the constant
volume heat capacity can be calculated from 1

(38/3V)y + P

Cy = (3)
VoaT/av)y + (eMT
The isothermal bulk modulus is then derived from
By = Bg ~ aBpYT
- Bg - (M (Cy/IT . (4)

These equatjons have been used to nbtain all the useful thsrmodynamic
data for fluid Csl, for example, up to 1.5 Mbar and 10,000 K.'




Some of the results ve have obtained for acoustic velocity in shock
compressed msetals are shown in Fig. 2. In the case of iron ve found evi-
dence of a2 solid-solid transitfon at a shock pressure of 2 Mbar and
melting at 2.5 Mbar. The data along the extension of the bulk sound
velocity curve (Cg) are for the liquid phase. In the case of tantalum we
observed only the melting transiticn. In both of these cases the acous-

tic velocity ig a linear function of density along the Hugoniot i1n the
1iquid phase.
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III. ISOBARIC EXPANSION

The isobaric expension experiment has been developed over the past
decade to provide stadle, gquilibriu- liquid metal samples up to four-
fold expansion and 10,000 K-l The experiment consists of a wire elec-
trically heated in an 1inert gas filled pressure vessei. The roughly
square electrical pulse, with 5 usec rise and fall times and 30-100 us
duration 1s chosen so that an approximately l-mm—~diameter vire is heated
quickly enough to svoid hydrodyvamic instabilities, such as the capillary
instability. On the other hand the heating pulse is slov enough so extra
heating of the surface through the skin effect 1is avoided, and the
pressure throughout the sample is nearly constant during the expansion.
Enthalpy is calculated as the time integral of the current times the
voltage, with the current and the voltage measured during the heating
pulse by a four probe method. Temperature is determined by multicolor
optical pyrometry of the wire surface, so the inert gas prevents chenmical
reaction giving non-thermal radijation as well as providing the pressure
medium. By increasing the pressure to supercritical, stable expansions
can be obtained to roughly the critical density (~4~fold expansion).

With this capability we have demonstrated that one can obtain good
pressure, density, enthalpy, and resistivity data along an isobaric ex-
pansion curve. With the addition of pyrometric temperature det?gmina-
tions, the constant pressure heat capacity i1s also available. For
dense metals, such as tantalum and lead, the liquid column remains stable
for tens of microseconds after the current 18 turned off, even at
temperatures above 8000 K.

The basis for acoustic velocity measurements in this thermodynamic
regime is a laser induced stress wave. After the curreant pulse has been
stopped, but before the liquid columm falls apart, we irrudiate one side
of the sample with a 0.1-0.5 J, 25 ns, pulsed ruby laser propagating
radially. With a focal spot of 100 y diameter we can generate a 10 kbar
stress wave, the velocity of which rapidly decays to the sonic velocity.
This wave propagates across a diameter of the wire and emerges at the
opposite side, causing a compression wave in the gas. With Schlieren
photography, we can photograph this wave in the gas and determine when it
breaks out of the sample. The sound VT’ocity is then calculated froa the
time interval and the sample diameter.

Data from many experiments ot lead and tantalum are shown in Fig. 3.
Ve have chosen density as the independent variable to show the linear de-
pendence of sound velocity on density, over a factor of two expansion in
the lead dsta. Several pressures are represented in Fig. 3a, and, at
least in the low density data we can obtain a rough upper limit om the
intrineic temperature dependence of the sound velocity. Since at a den-
sity of 5-6 gm/cc the temperature spread between 1 and 3 kbar isobars 1is
greater than 500 K and the accuracy of the sound velocity data is better
than 47, the independence of sound velocity un pressure gives

de

< . k .
SToT < 0.3 km/sec

On the other hand, from Fig. 3a we can determine that

dc

TOTS ~ | km/sec




Therefore the intrinsic temperature dependence at large expansions
appears to be much weaker than the density dependence.

(a)

C. kms™

50 6.0 70 8.0 90 100

4 —

32 4

(b)

C (km/s)

24 T T
110 120 130 140 150

p (g/cm?)

FPigure 3. Acoustic velocity in heated, expanded liquid metals: (a) lead
(Ref. 13); (b) tantalum (Ref.19).

The linearity of the precent data with density is consistent with
other measuremssta of sound velocity in fluid metals over much narrower
density rg?ges. Typicelly C is reported ss linear in T at constant
pressure. However, the apparent temperature dependence is probably im-
plicit through thermal expansion.



Given the previoualy obtained thermodynamic properties and the scund
vilocity, we can use the relatiomns

Cp = Cy + a’viB; (5)
vith a the thermal expansion coefficient, and
e? = VBy Cp/Cy (6)

to determine experimentally both Cv and BT’ Also, we can express
Griireiscn’s gamma as

- v 2
YG (ﬁ)Pc » (7)

so the isobaric expansion data and sound velocity completely determine
the derivatives of the equation of state surface.

IV. BIRCH’S LAW

With a linear density dependence of sound velocity both in compres-
sion and expansion for fluid metals, it 1s natural to plot both sets of
data together. The only fluid metal for which we have data both in shock
compression and isobaric expansion is tantalum, and this is shown along
vith other available data in Fig. 4. These data show that for tantalum
the same linear relation fits bnth sets of data from 10 to 30 gm/cc. The
lead data from 1sobaric expansion 18 extrapclated to high density by
using the common assumpcions for shocks in condensed media: shock
velocity linear in material velocity and pYy; comstant. The reasonable
linearity of sound velocity vs density is again to be seen. The iror and
alumipum BBSCk data are augmented by one-atmosphere data on molten
liquidsozz' The one material vhich appears to fall cutside the uniform
collection of data is lanthanum, for vhich the slope appears steep. How-
ever, we knov that the acoustic velocity of this metal 1is affected by
changTS in the electronic band structure in the density range shown
here. The other systematic feature of Fig. 4 is that the slope of the
lipear relations is monotonically decreasing in atomic mass.

This kind of plot has been presented first by Birch in an attempt to
derive the average atoumic number of materials deep in the earth from
seismic velocities. Birch started by measuring elastic wave velociti§2
in rocks tc 10 kbar, representing a density change of less than 10%.
He later 1included shock compression data, from which isentropic moduli
vere calculated or the shock wave velocity was used directly, to estab-
lish Birch’s Law: for isostructural materials the wave velocity decreases
as the squarc root of the n-~an atomic mass, while fgg a given amaterial
the wave velocity increases linearly with density. Since the original
work, several people have tried to explain this linear relation as an
approxig&tion to more general solid state models over a limited density
range. The present data show an apparent linearity over a much wider
density range than has been previously considered.
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The first half of Birch’s lav is that fsostructural materials should
have a wave velocity which scales inversely with the square rovot of the
mean atomic vaight. In Fig. 5 we shov that this scaling works very well
for 1iquid metals st the ! atmosphere liquidus. According to the vork of
Ashcroft and Lokner.l all metals at this point have roughly the same
packing fraction, so the structures asre closely similar. The metals
group naturally according to column in the periolic table so the offsets
must be determined by a combination of the valence, or core charge, and
the core electronic structure. These figures shov that we have rediscov-
ered Birch’s lav for fluid metals.

V. DISCUSSION

A starting point for understanding acoustic velocity in fluid metals
is to consider the disturbance as an jon plasma wave. The unscreened ion
plaams vave frequency is given by

2 4wn(Ze)?
a5 = — (8)

where n 18 the ion density, Z is the ionic charge and M is the ionic
mass. Screening by a gas of free electrons introduces a q dependence
through the dielectric function which results in a dispersion relation

wy = cq , 9)

where
2 1/2
nZ
c = (HN(E;_)-) » (10)

‘T73“(EP) is the density of states at the Fermi surface. N(BP) scales as
n'/?, 80 c, although it has the proper dependence on ionic mass and
temperature, should vary as the cube root of the density in this model,
and not linear with density. This model, developed by Bohm and Staver,
also fails to give proper qasn:itltivo values to vithin a factor of two
except for the alkali metals.

By putting terns vhich are functions of I in the free energy of the
system, one gets no closer to the experimental duia. If the Belnhoi,
free energy is a function of [, as in the one-component plasma model,
then

ol [,2(.3_:) T]T (11)




Ignoring the distinction between adiabatic and isothermal wmoduli, this
expression suggests & stronger teamperature than density dependence for
the sound velocity.

Twvo wodels which do reproduce the experimental results are
variations on the van der Waals equation oientnte. They are the hard
sphere van der Waals Sbeory of Young and Alder and a wmore realistic
soft sphere vettion-z Both of thase wodels are of the form

P52 (1+a06m] -3 ,

and (12)

E=E + NkT [-% + C(p,T)] - D(p) ,

where the functions A, B, C, and D are determined by fits to Monte Carlo
simulations of systeme with hard sphere or soft sphere potentials. The
various paramsters, such as hard sphere radius, or the power oi the soft
sphere potential, can be fit consistently to the data for fluid mecals,
including the linear density dependence of the sound velocity. Two dif-
ferences between these models and the Bohm-Staver or one component rlasma
model are that the potentials are stiffer and that the non-zero core size
is explicitly included. It is uot ciear which of these differences is
most important in correcting the point charge models. The van der Waals
models are semi-empirical, however. The more_fundamental theoiries, such
as those developed by Ashcroft and Langrech3 have not yet been applied
to the dcnsity dependence oi the bulk modulus.

Recent messurements by Shaw and Caldwell on fluid aikali metals wup
to 7 kbar and 450 K have given oimil,i results to ours, although over a
much more limited tliermodynamic range. They find & weak temperature
dependence and a rougaly linear density depandence nf acoustic velocity.
However, their data is presented in terms of "experimentalist variables'
= pressure and temperature - Jnsimad of density and temperature. Until
the inversion is done the accuracy of Birch’s lav cannot be confirmed.

We have shown that with current experimeantal techniques thermodynam-
ic quantities can be measured accurately for fluid metals over a four or
five-fold density range up to temperatures of 10,000 K. The result we
have presented here is that the acoustic velocity in these systems is
apparently relatively insensitive to temperature and linear in density
over a very wide thermodynamic range. We believe that the ionic core
propertios are important in determining this result both through their
finite eize and in the stiffness of the potential relative to a point
change system. However, the question still remains: Why is Birch’s law
so good?
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